3 research outputs found

    Outdoor node localization using random neural networks for large-scale urban IoT LoRa networks

    Get PDF
    Accurate localization for wireless sensor end devices is critical, particularly for Internet of Things (IoT) location-based applications such as remote healthcare, where there is a need for quick response to emergency or maintenance services. Global Positioning Systems (GPS) are widely known for outdoor localization services; however, high-power consumption and hardware cost become a significant hindrance to dense wireless sensor networks in large-scale urban areas. Therefore, wireless technologies such as Long-Range Wide-Area Networks (LoRaWAN) are being investigated in different location-aware IoT applications due to having more advantages with low-cost, long-range, and low-power characteristics. Furthermore, various localization methods, including fingerprint localization techniques, are present in the literature but with different limitations. This study uses LoRaWAN Received Signal Strength Indicator (RSSI) values to predict the unknown X and Y position coordinates on a publicly available LoRaWAN dataset for Antwerp in Belgium using Random Neural Networks (RNN). The proposed localization system achieves an improved high-level accuracy for outdoor dense urban areas and outperforms the present conventional LoRa-based localization systems in other work, with a minimum mean localization error of 0.29 m

    Performance of a live multi-gateway LoRaWAN and interference measurement across indoor and outdoor localities

    Get PDF
    Little work has been reported on the magnitude and impact of interference with the performance of Internet of Things (IoT) applications operated by Long-Range Wide-Area Network (LoRaWAN) in the unlicensed 868 MHz Industrial, Scientific, and Medical (ISM) band. The propagation performance and signal activity measurement of such technologies can give many insights to effectively build long-range wireless communications in a Non-Line of Sight (NLOS) environment. In this paper, the performance of a live multi-gateway in indoor office site in Glasgow city was analysed in 26 days of traffic measurement. The indoor network performances were compared to similar performance measurements from outdoor LoRaWAN test traffic generated across Glasgow Central Business District (CBD) and elsewhere on the same LoRaWAN. The results revealed 99.95% packet transfer success on the first attempt in the indoor site compared to 95.7% at the external site. The analysis shows that interference is attributed to nearly 50 X greater LoRaWAN outdoor packet loss than indoor. The interference measurement results showed a 13.2–97.3% and 4.8–54% probability of interfering signals, respectively, in the mandatory Long-Range (LoRa) uplink and downlink channels, capable of limiting LoRa coverage in some areas
    corecore